Class XII Session 2024-25 Subject - Mathematics Sample Question Paper - 6

Time Allowed: 3 hours

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

1.	If $A = [a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = a_{ij}$	$= \begin{cases} 1, & \text{when } i \neq j \\ 0, & \text{when } i = j \end{cases} \text{ then } A^2 \text{ is }$	[1]
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	$ c) \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} $	$d) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	
2.	Three points P(2x, $x + 3$), Q(0, x) and R($x + 3$, $x + 6$)	are collinear, then x is equal to:	[1]
	a) 2	b) 0	
	c) 3	d) 1	
3.	If A·(adj A) = $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then the value of $ A + A $	adj A is equal to:	[1]
	a) 12	b) 3	
	c) 27	d) 9	
4.	If A is a non singular matrix and A' denotes the trans	pose of A, then	[1]
	a) $ AA' \neq A^2 $	b) $ \mathbf{A} $ - $ \mathbf{A}' \neq 0$	
	c) $ A + A' \neq 0$	d) A ≠ A'	
5.	If (a_1, b_1, c_1) and (a_2, b_2, c_2) be the direction ratios o	f two parallel lines then	[1]
	a) $a_1^2 + b_1^2 + c_1^2 = a_2^2 + b_2^2 + c_2^2$	b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	c) $a_{1,} = a_2, b_1 = b_2, c_1 = c_2$	d) $a_1a_2 + b_1b_2 + c_1c_2 = 0$	
	Page 1	of 20	

CLICK HERE

>>

Get More Learning Materials Here : 💻

🕀 www.studentbro.in

Maximum Marks: 80

a) $y = kx$ b) log $y - kx$ c) $\cos x$ d) an x 7. The correc points of the feasible region for a Linear Programming problem are P(0, 5), Q(1, 5), R(4, 2) and S(12, 0). The minimum value of the objective function $Z = 2x + 5y$ is at the point. a) Q b) S c) R d) P 8. In $\triangle ABC$, $\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: 11. a) $\hat{i} - \hat{j} + \hat{k}$ b) $2\hat{i} - 2\hat{j} + 2\hat{k}$ c) $4\hat{i} + 6\hat{k}$ d) $2\hat{i} + 3\hat{k}$ 9. $\int e^{2\log x} dx$ is equal to: 11. a) $\frac{1}{3} - \hat{j} - \hat{k}$ b) $2\hat{i} - 2\hat{j} + 2\hat{k}$ c) $4\hat{i} + 6\hat{k}$ d) $2\hat{i} + 3\hat{k}$ 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then d) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? 11. Which of the following statements is correct? 12. If the projection of $\vec{a} - \hat{i} - 2\hat{j} - 3\hat{k}$ on $\vec{b} - 2\hat{i} + 3\hat{k}$ is zeo, then the value of λ is: 13. $\partial 0$ b) 1 c) $-\frac{2\pi}{2}$ d) $-\frac{2}{2}$ d) $-\frac{2}{2}$ 13. Adj ₁ (KA) =	6.	The general solution of the differential equation $\frac{d}{dt}$	$\frac{y}{x} = \frac{y}{x}$ is	[1]
c) $\cos x$ (1) $\sin x$ 7. The corner points of the feasible region for a Linear Programming problem are P(0, 5), Q(1, 5), P(4, 2) and S(12, 0). The minimum value of the objective function $Z = 2x + 5y$ is at the point. a) Q (b) S c) R (c) R (c) $B = \frac{1}{2} + \frac{1}{2} + 2k$ and $\overrightarrow{AC} = 3\hat{1} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: 11 a) $\hat{i} = \hat{j} + \hat{k}$ (c) $2\hat{i} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: 12 a) $\hat{i} = \hat{j} + \hat{k}$ (c) $2\hat{i} + 2\hat{k}$ (c) $2\hat{i} + 3\hat{k}$ 5. $\int e^{2\log x} dx$ is equal to: (1) $\hat{a} + \hat{b} + \hat{c}$ (c) $2\hat{i} + 2\hat{k}$ (c) $2\hat{i} + 3\hat{k}$ 5. $\int e^{2\log x} dx$ is equal to: (1) $\hat{a} + \hat{c} + \hat{c}$ (c) $\hat{b} x^5 + \hat{c}$ (c) $\hat{a} + \hat{c} + \hat{c}$ (c) $\hat{b} x^4 + \hat{c}$ 10. If $A = \begin{bmatrix} \hat{b} & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then (1) $\hat{a} \times 0, x = 5$ (c) $x = y$ (c) $x = $		a) y = kx	b) log y - kx	
7. The corner polus of the feasible region for a Linear Programming problem are P(0, 5), Q(1, 5), R(4, 2) and S(12, 0). The minimum value of the objective function Z = 2x + 5y is at the point. a) Q b) S a) Q b) S c) R d) P 8. In △ABC, $\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: II a) $\hat{i} - \hat{j} + \hat{k}$ b) $2\hat{i} - 2\hat{j} + 2\hat{k}$ c) $4\hat{i} + 6\hat{k}$ d) $2\hat{i} + 3\hat{k}$ 9. $fe^{5\log x}$ dx is equal to: II a) $\frac{x}{k} - C$ b) $6x^5 + C$ c) $\frac{x}{k} - C$ c) $\frac{x}{k} - C$ d) $5x^4 + C$ linear Signature of the matrix A, then 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then II a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits uno optimal solutions. c. If a LPP admits uno optimal solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda \hat{k}$ is zero, then the value of λ is: II a) 0 b) 1 c) $\frac{-2}{3}$ d) $\frac{-2}{3}$ d) $\frac{-2}{3}$ d) $\frac{-2}{3}$ <th></th> <th>c) cos x</th> <th>d) tan x</th> <th></th>		c) cos x	d) tan x	
a) Q b) S c) R c) R	7.	The corner points of the feasible region for a Line and S(12, 0). The minimum value of the objective	ear Programming problem are P(0, 5), Q(1, 5), R(4, 2) e function $Z = 2x + 5y$ is at the point.	[1]
c) R d) P 8. In $\triangle ABC, \overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: a) $\hat{i} - \hat{j} + \hat{k}$ b) $2\hat{i} - 2\hat{j} + 2\hat{k}$ c) $4\hat{i} + 6\hat{k}$ d) $2\hat{i} + 3\hat{k}$ 9. $fe^{5\log x} dx$ is equal to: a) $\frac{x}{t} + C$ b) $6x^{5} + C$ c) $\frac{x}{0} + C$ d) $5x^{4} + C$ 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^{T}$, where A^{T} is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every 1.PP admits an optimal selection. b. A LPP admits unique optimal solutions. c. If a LPP admits two optimal solutions it has an infinite solution. d. The set of all feasible solutions of a 1.PP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) =		a) Q	b) S	
8. In △ABC, $\overrightarrow{AB} = \widehat{i} + \widehat{j} + 2\widehat{k}$ and $\overrightarrow{AC} = 3\widehat{i} - \widehat{j} + 4\widehat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: a) $\widehat{i} - \widehat{j} + \widehat{k}$ b) $2\widehat{i} - 2\widehat{j} + 2\widehat{k}$ c) $4\widehat{i} + 6\widehat{k}$ d) $2\widehat{i} + 3\widehat{k}$ 9. $\int e^{5\log x} dx$ is equal to: a) $\frac{x}{3} + C$ b) $6x^5 + C$ c) $\frac{x}{4} + C$ d) $5x^4 + C$ 10. If $A = \begin{bmatrix} 5 & x\\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal selection. b. A LPP admits an optimal selection. c. If a LPP admits arouting is that an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (a) c) Option (c) d) b) for $\widehat{i} = \widehat{i} - 2\widehat{j} + 3\widehat{k}$ on $\widehat{b} = 2\widehat{i} + \lambda\widehat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. $Adj.(KA) = $ [14. a) $K^{n-1}Adj.A$ b) $K^{n-1}Adj.A$ 14. X and Y are independent events such that $P(X \cap \widehat{Y}) = \frac{2}{9}$ and $P(X) = \frac{3}{9}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{6}$ d) $\frac{2}{7}$ 15. The general solution of a differential equation of the trype $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{P^n, dy} = \int (Q_1e^{P^n, dy}) dy + C$ b) $ye^{P^n, dy} = \int (Q_1e^{P^n, dy}) dy + C$ Pace 2 of 20		c) R	d) P	
a) $\hat{1} - \hat{1} + \hat{k}$ b) $2\hat{1} - 2\hat{1} + 2\hat{k}$ c) $4\hat{1} + 6\hat{k}$ d) $2\hat{1} + 3\hat{k}$ 9. $\int e^{5\log x} dx$ is equal to: a) $\frac{x^5}{5} + C$ b) $6x^5 + C$ c) $a\frac{4}{6} + C$ d) $5x^4 + C$ 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal selection. b. A LPP admits an optimal selection. c. If a LPP admits unique optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (a) c) Option (b) d) $\frac{1}{2}$ 13. $Ad_1(KA) = $ a) $K^{n-1}Ad_1, A$ b) $K^{n+1}Ad_1, A$ c) K Adj. A d) K^{n-1}Adj. A d) K^{n}Adj. A 14. X and Y are independent events such that $P(X \cap \hat{Y}) = \frac{2}{3}$ and $P(X) = \frac{3}{3}$. Then P(Y) is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$ 15. The general solution of a differential equation of the trype $\frac{4x}{4y} + P_1 x = Q_1$ is [1] a) $xe^{P_1 Ay} = \int (Q_1e^{P_1 Ay}) dy + C$ b) $ye^{P_1 Ay} = \int (Q_1e^{P_1 Ay}) dy + C$ Page 2 of 20	8.	In $\triangle ABC$, $\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j}$	$+4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to:	[1]
c) $4\hat{1} + 6\hat{k}$ d) $2\hat{1} + 3\hat{k}$ 9. $\int e^{5\log x} dx$ is equal to: [1] a) $\frac{x}{5} + C$ b) $6x^5 + C$ c) $\frac{x}{6} + C$ d) $5x^4 + C$ 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal solution. b. A LPP admits two optimal solution. c. If a LPP admits two optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (a) b) Option (a) c) Option (b) d) Doption (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{3}{2}$ d) $\frac{-2}{3}$ 13. Adj ₁ (KA) = a) K^{n+1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj. A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{3}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$ c) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{P_1dy} = \int (Q_1e^{P_1dy}) dy + C$ b) $ye^{P_1dy} = \int (Q_1e^{P_1dy}) dy + C$		a) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$	b) $2\hat{\mathrm{i}}-2\hat{\mathrm{j}}+2\hat{\mathrm{k}}$	
9. $\int e^{5 \log x} dx$ is equal to: (1) a) $\frac{x^5}{5} + C$ b) $6x^5 + C$ c) $\frac{x^6}{6} + C$ d) $\frac{5x^4 + C}{5x^4 + C}$ 10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solution. c. If a LPP admits two optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{3}{2}$ d) $\frac{-3}{3}$ 13. Adj.(KA) = a) $K^{n,1}$ Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj. A d) K^n Adj. A d) K^n Adj. A i) $\frac{3}{3}$ c) $\frac{1}{3}$ d) $\frac{3}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is a) $xeI^{P_1dy} = \int (Q_1e^{IP_1dy}) dy + C$ b) $yeI^{P_1dy} = \int (Q_1e^{IP_1dy}) dy + C$		c) $4\hat{i} + 6\hat{k}$	d) $2\hat{i} + 3\hat{k}$	
a) $\frac{x^2}{5} + C$ b) $_{6x}5 + C$ c) $\frac{x^2}{6} + C$ d) $_{5x}4 + C$ 10. If $A = \begin{bmatrix} 5 \\ y \end{bmatrix} and A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c: If a LPP admits two optimal solutions of a LPP is not a convex set. a) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{3^2}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = [1] a) $K^{n+1}Adj.A$ b) $K^{n+1}Adj.A$ c) K Adj.A d) KA d) KA d) KA A d) KA Adj.A 14. X and Y are independent events such that $P(X \cap \hat{Y}) = \frac{2}{6}$ and $P(X) = \frac{3}{8}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20	9.	$\int e^{5 \log x} dx$ is equal to:		[1]
c) $\frac{s^4}{6} + C$		a) $rac{\mathrm{x}^5}{5} + \mathrm{C}$	b) _{6x⁵ + C}	
10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solution. c. If a LPP admits two optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $-\frac{3}{2}$ d) $-\frac{2}{3}$ 13. Adj.(KA) = a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) KA A d		c) $\frac{x^6}{6} + C$	d) 5x ⁴ + C	
a) $x = 0, y = 5$ b) $x = 5, y = 0$ c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? [1] a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: [1] a) 0 b) 1 c) $-\frac{3}{2}$ d) $-\frac{2}{3}$ 13. Adj.(KA) = [1] a) K ⁿ⁻¹ Adj. A b) K ⁿ⁺¹ Adj. A c) K Adj. A d) K ⁿ Adj.A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dt}{dy} + P_1 x = Q_1$ is a) $xe^{fP_1dy} = f(Q_1e^{fP_1dy}) dy + C$ b) $ye^{fP_1dy} = f(Q_1e^{fP_1dy}) dy + C$ Page 2 of 20	10.	If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^{T}$, where A^{T} is the transformation of the	spose of the matrix A, then	[1]
c) $x = y$ d) $x + y = 5$ 11. Which of the following statements is correct? [1] a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solutions it has an infinite solution. c. If a LPP admits two optimal solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{1} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj.A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ Page 2 of 20		a) x = 0, y = 5	b) $x = 5, y = 0$	
11. Which of the following statements is correct? [1] a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solutions it has an infinite solution. c. If a LPP admits two optimal solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = [1] a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj.A 14. X and Y are independent events such that P(X $\cap \bar{Y}) = \frac{2}{5}$ and P(X) = $\frac{3}{5}$. Then P(Y) is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20		c) x = y	d) x + y = 5	
a. Every LPP admits an optimal selection. b. A LPP admits unique optimal solution. c. If a LPP admits two optimal solutions it has an infinite solution. d. The set of all feasible solutions of a LPP is not a convex set. a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj.A 14. X and Y are independent events such that $P(X \cap \tilde{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then P(Y) is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ c) $\frac{1}{2}(Q_1e^{\int P_1dy}) dy + C$ b) $ye^{\int P_1dy} = \int (Q_1e^{\int P_1dy}) dy + C$ Page 2 of 20	11.	Which of the following statements is correct?		[1]
a) Option (d) b) Option (a) c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj.A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20		a. Every LPP admits an optimal selection.b. A LPP admits unique optimal solution.c. If a LPP admits two optimal solutions it has an d. The set of all feasible solutions of a LPP is no	n infinite solution. t a convex set.	
c) Option (b) d) Option (c) 12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = [1 a) K ⁿ⁻¹ Adj. A b) K ⁿ⁺¹ Adj. A c) K Adj. A d) K ⁿ Adj. A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then P(Y) is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{4x}{dy} + P_1x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ Page 2 of 20		a) Option (d)	b) Option (a)	
12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = [1 a) K^{n-1} Adj. A b) K^{n+1} Adj. A c) K Adj. A d) K^n Adj. A 14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20		c) Option (b)	d) Option (c)	
a) 0 b) 1 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$ 13. Adj.(KA) = a) K ⁿ⁻¹ Adj. A b) K ⁿ⁺¹ Adj. A c) K Adj. A 14. X and Y are independent events such that $P(X \cap \overline{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then P(Y) is equal to: [1 a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ c) $\frac{1}{5}$ c) $\frac{1}{6}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is [1 a) $xe^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ Page 2 of 20	12.	If the projection of $ec{a}=\hat{i}-2\hat{j}+3\hat{k}$ on $ec{\mathrm{b}}=2\hat{\mathrm{i}}$	$+\lambda \hat{ m k}$ is zero, then the value of λ is:	[1]
c) $\frac{-3}{2}$ 13. Adj.(KA) = [1 a) K^{n-1} Adj. A c) K Adj. A the distribution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20 (1) $\frac{-2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ (1) $\frac{1}{3} = \int (Q_1 e^{\int P_1 dy}) dy + C$ (1) $\frac{1}{3} = \int (Q_1 e^{\int P_1 dy}) dy + C$ (1) $\frac{1}{3} = \int (Q_1 e^{\int P_1 dy}) dy + C$ (1) $\frac{1}{3} = \int (Q_1 e^{\int P_1 dy}) dy + C$ (2) $\frac{1}{3} = \int (Q_1 e^{\int P_1 dy}) dy + C$		a) 0	b) 1	
13. Adj.(KA) = [1 a) K ⁿ⁻¹ Adj. A b) K ⁿ⁺¹ Adj. A c) K Adj. A d) K ⁿ Adj.A 14. X and Y are independent events such that $P(X \cap \overline{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then P(Y) is equal to: [1 a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is [1 a) $xe^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1e^{\int P_1 dy}) dy + C$ Page 2 of 20		c) $\frac{-3}{2}$	d) $\frac{-2}{3}$	
a) K^{n-1} Adj. A c) K Adj. A 14. X and Y are independent events such that $P(X \cap \overline{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ c) $\frac{1}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20	13.	Adj.(KA) =		[1]
c) K Adj. A 14. X and Y are independent events such that $P(X \cap \overline{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: (1) (1) (1) (1) (2) (3) (2) (5) (5) (1) (5) (1) (5) (1) (6) (7) (7) (7) (7) (7) (7) (7) (7		a) K ⁿ⁻¹ Adj. A	b) K ⁿ⁺¹ Adj. A	
14. X and Y are independent events such that $P(X \cap \overline{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: a) $\frac{2}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{5}$ d) $\frac{2}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20		c) K Adj. A	d) K ⁿ Adj.A	
a) $\frac{2}{3}$ c) $\frac{1}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is a) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$ b) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$ Page 2 of 20	14.	X and Y are independent events such that $P(X \cap $	\overline{Y}) = $\frac{2}{5}$ and P(X) = $\frac{3}{5}$. Then P(Y) is equal to:	[1]
c) $\frac{1}{5}$ 15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is [1 a) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$ b) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$ Page 2 of 20		a) $\frac{2}{3}$	b) $\frac{1}{3}$	
15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is [1 a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ b) $ye^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$ Page 2 of 20		c) $\frac{1}{5}$	d) $\frac{2}{5}$	
a) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right) dy + C$ b) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right) dy + C$ Page 2 of 20	15.	The general solution of a differential equation of	the type $rac{dx}{dy}+\mathrm{P}_1x=\mathrm{Q}_1$ is	[1]
Page 2 of 20		a) $xe^{\int \mathrm{P}_1 dy} = \int \left(\mathrm{Q}_1 e^{\int \mathrm{P}_1 dy} ight) dy + \mathrm{C}$	b) $y e^{\int \mathrm{P}_1 dy} = \int \left(\mathrm{Q}_1 e^{\int \mathrm{P}_1 dy} ight) dy + \mathrm{C}$	
		Pag	je 2 of 20	

Get More Learning Materials Here :

Reg www.studentbro.in

	C) $y \cdot e^{\int_P dx} = \int \left(Q_1 e^{\int P_1 dx} ight) dx + C$	d) $xe^{\int P^1dx}=\int \left(Q_1e^{\int P_1dx} ight)dx+C$	
16.	If $ert ec{a} ert = 4$ and $-3 \leq \lambda \leq 2$, then the range of $ert \lambda ec{a} ert$ is		[1]
	a) [0, 12]	b) [0, 8]	
	c) [8, 12]	d) [-12, 8]	
17.	If x = a sec θ , y = b tan θ then $\frac{dy}{dx}$ = ?		[1]
	a) $\frac{b}{\sec \theta}$	b) $\frac{b}{\tan \theta}$	
	c) $\frac{b}{cosec\theta}$	d) $\frac{b}{c}\cot\theta$	
18.	If the lines $\frac{x-1}{2} = \frac{y-2}{2h} = \frac{z-3}{2}$ and $\frac{x-1}{2h} = \frac{y-1}{1} = \frac{z}{2}$	$\frac{-6}{5}$ are perpendicular to each other then k = ?	[1]
	$-3 \ 2\kappa \ 2 \ 5\kappa \ 1 \ -3$	b) $\frac{5}{-2}$	
	(c) $\frac{-5}{7}$	d) $\frac{10}{7}$	
19.	Assertion (A): If two positive numbers are such that s	$\frac{0}{7}$ sum is 16 and sum of their cubes is minimum, then	[1]
101	numbers are 8, 8.		[-]
	Reason (R): If f be a function defined on an interval I	and $c\in l$ and let f be twice differentiable at $c,$ then x = c	
	is a point of local minima if $f'(c) = 0$ and $f''(c) > 0$ and	f(c) is local minimum value of f.	
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
20.	Assertion (A): Let A = {2, 4, 6} and B = {3, 5, 7, 9} a	nd defined a function $f = \{(2, 3), (4, 5), (6, 7)\}$ from A to	[1]
	B. Then, f is not onto.		
	Reason (R): A function $f : A \rightarrow B$ is said to be onto, if under f	If every element of B is the image of some elements of A	
	a) Both A and B are true and B is the correct	b) Doth A and D are true but D is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false	d) A is false but R is true	
	Sec	tion B	
21.	Write the value of $\sin^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(-\frac{1}{2}\right)$		[2]
		OR	
	Find the value of $\sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right]$		
22.	A man is walking at the rate of 6.5 km/hr towards the	foot of a tower 120 m high. At what rate is he approaching	[2]
	the top of the tower when he is 50 m away from the to	wer	
23.	Find the intervals in which the function f given by $f(x)$	$= 2x^3 - 3x^2 - 36x + 7$ is decreasing.	[2]
		OR	
	The volume of a sphere is increasing at the rate of 8 cm	m ³ /s. Find the rate at which its surface area is increasing wh	en
	$\pi/2$.		[2]
24.	Prove that: $\int_{0}^{\pi} \frac{dx}{(1+\sqrt{\tan x})} = \frac{\pi}{4}$		[-]
25.	Show that $f(x) = (x - 1) e^x + 1$ is an increasing function	on for all $x > 0$.	[2]
	Sec	tion C	
	Page 3	of 20	

Get More Learning Materials Here :

26.	Evaluate $\int rac{\sin(x-a)}{\sin(x+a)} dx.$	[3]
27.	A problem in mathematics is given to three students whose chances of solving it correctly are 1/2, 1/3 and 1/4	[3]
	respectively. What is the probability that only one of them solves it correctly?	
28.	Evaluate $\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$.	[3]
	OR	
	Evaluate the integral: $\int rac{1}{x\sqrt{1+x^n}} dx$	
29.	$(x^2 + y^2)$ dy = xydx. If y(1) = 1 and y (x ₀) = e, then find the value of x ₀ .	[3]
	OR	
	Find a particular solution of the differential equation $rac{dy}{dx}+2y an x=\sin x$, given that y = 0, when $x=rac{\pi}{3}$.	
30.	Solve the following LPP graphically:	[3]
	Minimise $Z = 5x + 10y$	
	subject to the constraints $x + 2y \ge 120$	
	$x + y \ge 60$, $x - 2y \ge 0$ and $x, y \ge 0$	
	OR	
	The corner points of the feasible region determined by the system of linear inequations are as shown below:	
	D(0,2) 2 $D(0,2)$	

Answer each of the following:

i. Let z = 13x - 15y be the objective function. Find the maximum and minimum values of z and also the corresponding points at which the maximum and minimum values occur.

ii. Let z = kx + y be the objective function. Find k, if the value of z at A is same as the value of z at B.

31. If $e^{x} + e^{y} = e^{x + y}$, prove that $\frac{dy}{dx} + e^{y-x} = 0$.

Section D

[3]

[5]

🕀 www.studentbro.in

32. Using method of integration find the area of the triangle ABC, co-ordinates of whose vertices are A (2, 0), B (4, [5]
5) and C (6, 3).

33. Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

OR

Show that the function f: $R_0 \rightarrow R_0$, defined as f (x) = $\frac{1}{x}$, is one-one onto, where R_0 is the set non-zero real numbers. Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0 ?

Get More Learning Materials Here :

2x + y + 3z = 1

35. Find the shortest distance between the given lines. $\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$, [5] $\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(-2\hat{i} + 3\hat{j} + 8\hat{k})$

OR

Find the perpendicular distance of the point (1, 0, 0) from the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$. Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.

Section E

36. **Read the following text carefully and answer the questions that follow:**

For an audition of a reality singing competition, interested candidates were asked to apply under one of the two musical genres-folk or classical and under one of the two age categories-below 18 or 18 and above.

The following information is known about the 2000 application received:

i. 960 of the total applications were the folk genre.

- ii. 192 of the folk applications were for the below 18 category.
- iii. 104 of the classical applications were for the 18 and above category.

Questions:

- i. What is the probability that an application selected at random is for the 18 and above category provided it is under the classical genre? Show your work. (1)
- ii. An application selected at random is found to be under the below 18 category. Find the probability that it is under the folk genre. Show your work. (1)

iii. If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then $P(A \cup B)$ is equal to. (2)

OR

iv. If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$, then find $P(A' \cap B')$. (2)

37. Read the following text carefully and answer the questions that follow:

Three friends Ganesh, Dinesh and Ramesh went for playing a Tug of war game. Team A, B, and C belong to Ganesh, Dinesh and Ramesh respectively.

Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area (team areas shown below).

Team A pulls with $F_1 = 4\hat{i} + 0\hat{j}$ KN

Team B ightarrow F₂ = -2 \hat{i} + 4 \hat{j} KN

Team C ightarrow F₃ = -3 \hat{i} - 3 \hat{j} KN

- i. Which team will win the game? (1)
- ii. What is the magnitude of the teams combine Force? (1)
- iii. What is the magnitude of the force of Team B? (2)

Page 5 of 20

Get More Learning Materials Here : 📕

CLICK HERE

[4]

[4]

How many KN Force is applied by Team A? (2)

38. **Read the following text carefully and answer the questions that follow:**

An Apache helicopter of the enemy is flying along the curve given by $y = x^2 + 7$. A soldier, placed at (3, 7) want to shoot down the helicopter when it is nearest to him.

i. If P (x₁, y₁) be the position of a helicopter on curve $y = x^2 + 7$, then find distance D from P to soldier place at

(3, 7). (1)

ii. Find the critical point such that distance is minimum. (1)

iii. Verify by second derivative test that distance is minimum at (1, 8). (2)

OR

Find the minimum distance between soldier and helicopter? (2)

Page 6 of 20

Get More Learning Materials Here :

Solution

```
Section A
```

(b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Explanation: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

2.

3.

1.

(d) 1 Explanation: As points are collinear \Rightarrow Area of triangle formed by 3 points is zero. $\Rightarrow \frac{1}{2} \begin{vmatrix} (x_1 - x_2) & (x_2 - x_3) \\ (y_1 - y_2) & (y_2 - y_3) \end{vmatrix} = 0$ $\Rightarrow \frac{1}{2} \begin{vmatrix} (2x - 0) & \{0 - (x + 3)\} \\ (x + 3 - x) & \{x - (x + 6)\} \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 2x & -(x + 3) \\ 3 & -6 \end{vmatrix} = 0$ $\Rightarrow -12x + 3(x + 3) = 0$ \Rightarrow -12x + 3x + 9 = 0 \Rightarrow -9x = -9 \Rightarrow x = 1 (a) 12 Explanation: 12 **Explaination:** $\mathbf{A} \cdot (\text{adj A}) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ we know that A.(AdjA) = I.|A| $\implies \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = |A| I$ $\implies 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$ \implies 3I = |A| I \implies |A|=3 ---(1) $|Adj A| = |A|^{3-1}$ [Since order n=3] $|Adj A| = (3)^2 = 9$ |adj(A)| = 9 -----(2) Now, |A| + |adj A| = 3 + 9 = 12(c) $|A| + |A'| \neq 0$ **Explanation:** Because, the determinant of a matrix and its transpose are always equal that is |A| = |A'|

5.

4.

(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ **Explanation:** We know that if there are two parallel lines then their direction ratios must have a relation $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Page 7 of 20

Get More Learning Materials Here : 📕

CLICK HERE

6. **(a)** y = kx **Explanation:** We have, $\frac{dy}{dx} = \frac{y}{x}$ $\Rightarrow \frac{dy}{y} = \frac{dx}{x}$ Integrating on both sides, $\int \frac{dy}{y} = \int \frac{dx}{x}$ $\log |y| = \log |x| + \log k$ $\Rightarrow \log (\frac{y}{x}) = \log k$ $\Rightarrow y = k x$

7.

(c) R

Explanation:

Corner points	Value of $Z = 2x + 5y$
P(0, 5)	Z = 2(0) + 5(5) = 25
Q(1, 5)	Z = 2(1) + 5(5) = 27
R(4, 2)	$Z = 2(4) + 5(2) = 18 \rightarrow Minimum$
S(12, 0)	Z = 2(12) + 5(0) = 24

Thus, minimum value of Z occurs ar R(4, 2)

8.

(d) $2\hat{i} + 3\hat{k}$ Explanation: $2\hat{i} + 3\hat{k}$

9.

(c) $\frac{x^6}{6} + C$ Explanation: $\frac{x^6}{6} + C$

10.

(c) $\mathbf{x} = \mathbf{y}$ Explanation: $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$ $\begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix} = \begin{bmatrix} 5 & y \\ x & 0 \end{bmatrix}$ $\mathbf{x} = \mathbf{y}$

11.

(d) Option (c)

Explanation: If a LPP admits two optimal solutions it has an infinite solution.

12.

(d) $\frac{-2}{3}$ Explanation: $\frac{\vec{a}\cdot\vec{b}}{|b|} = 0$ $\vec{a}\cdot\vec{b} = 0$ $(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (2\hat{i} + \lambda\hat{k}) = 0$ $2 \times 1 + 3\lambda = 0$ $2 + 3\lambda = 0$ $3\lambda = -2$ $\lambda = \frac{-2}{3}$

13. **(a)** Kⁿ⁻¹ Adj. A

Explanation: Adj. (KA) = K^{n-1} Adj.A, where K is a scalar and A is a n \times n matrix.

Page 8 of 20

CLICK HERE

>>

14.

(b) $\frac{1}{3}$

Explanation: $\frac{1}{3}$

15. **(a)** $xe^{\int \mathbf{P}_1 dy} = \int \left(\mathbf{Q}_1 e^{\int \mathbf{P}_1 dy} \right) dy + \mathbf{C}$

Explanation: The integrating factor of the given differential equation $\frac{dx}{dy} + P_1 x = Q_1 \text{ is } e^{\int P_1 dy}$

Thus, the general solution of the differential equation is given by,

$$egin{aligned} &\mathbf{x}(\mathrm{I},\mathrm{F}.) = \int (\mathrm{Q}_1 imes \mathrm{I},\mathrm{F}.)\mathrm{d} \mathrm{y} + \mathrm{C} \ &\Rightarrow \mathrm{x}.\,\mathrm{e}^{\int\mathrm{P}_1\mathrm{d} \mathrm{y}} = \int \left(\mathrm{Q}_1\mathrm{e}^{\int\mathrm{P}_1\mathrm{d} \mathrm{y}}
ight)\mathrm{d} \mathrm{y} + \mathrm{C} \end{aligned}$$

16. **(a)** [0, 12]

Explanation: Given that, $|\vec{\mathbf{a}}| = 4$ and $-3 \le \lambda \le 2$ We know that, $|\lambda \vec{\mathbf{a}}| = |\lambda| |\vec{\mathbf{a}}|$ $\Rightarrow |\lambda \vec{\mathbf{a}}| = |-3| |\vec{\mathbf{a}}| = 3.4 = 12$ at $\lambda = -3$ $\Rightarrow |\lambda \vec{\mathbf{a}}| = |0| |\vec{\mathbf{a}}| = 0.4 = 0$ at $\lambda = 0$ $\Rightarrow |\lambda \vec{\mathbf{a}}| = |2| |\vec{\mathbf{a}}| = 2.4 = 8$ at $\lambda = 2$ Hence, the range of $|\lambda \vec{\mathbf{a}}|$ is [0, 12].

17.

(c) $\frac{b}{a} cosec\theta$ Explanation: $x = a \sec\theta$, we get $\therefore \frac{dx}{d\theta} = a\sec\theta \cdot \tan\theta$ $\therefore \frac{d\theta}{d\theta} = \frac{1}{a\sec\theta \cdot \tan\theta}$ $y = b \tan\theta$, we get $\therefore \frac{dy}{d\theta} = b \cdot \sec^2\theta$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ $\Rightarrow \frac{dy}{dx} = b \cdot \sec^2\theta \times \frac{1}{a\sec\theta \cdot \tan\theta}$ $\Rightarrow \frac{dy}{dx} = \frac{b \sec\theta}{a\tan\theta}$ $\Rightarrow \frac{dy}{dx} = \frac{b \sec\theta}{a \tan\theta}$ $\Rightarrow \frac{dy}{dx} = \frac{b \sec\theta}{a \cos\theta}$ $\Rightarrow \frac{dy}{dx} = \frac{b}{a} cosec\theta$ (a) $\frac{-10}{7}$

18. **(a**

Explanation: If the lines are perpendicular to each other then the angle between these lines will be

 $\begin{aligned} \frac{\pi}{2}, \text{ then the cosine will be 0} \\ \vec{a} &= -3\hat{i} + 2\hat{k}\hat{j} + 2\hat{k} \\ \Rightarrow |\vec{a}| &= \sqrt{3^2 + (2k)^2 + 2^2} \\ &= \sqrt{13 + 4k^2} \\ \overrightarrow{\mathbf{b}} &= 3k\hat{i} + \hat{j} - 5\hat{k} \\ \Rightarrow |\vec{\mathbf{b}}| &= \sqrt{(3k)^2 + 1 + 5^2} \\ &= \sqrt{9k^2 + 26} \\ \cos\left(\frac{\pi}{2}\right) &= \frac{(3\hat{k}\hat{i} + \hat{j} - 5\hat{k}) \cdot (-3\hat{i} + 2\hat{k}\hat{j} + 2\hat{k})}{\sqrt{13 + 4k^2} \times \sqrt{9k^2 + 26}} \\ 0 &= \frac{-9k + 2k - 10}{\sqrt{13 + 4k^2} \times \sqrt{9k^2 + 26}} \\ \Rightarrow k &= -\frac{10}{7} \end{aligned}$

19. (a) Both A and R are true and R is the correct explanation of A.Explanation: Let one number be x, then the other number will be (16 - x). Let the sum of the cubes of these numbers be denoted by S.

Then, $S = x^3 + (16 - x)^3$ On differentiating w.r.t. x, we get

Page 9 of 20

Get More Learning Materials Here :

CLICK HERE

 $\frac{dS}{dx} = 3x^2 + 3(16 - x)^2(-1)$ $= 3x^2 - 3(16 - x)^2$ $\Rightarrow \frac{d^2S}{dx^2} = 6x + 6(16 - x) = 96$ For minima put $\frac{dS}{dx} = 0$. $\therefore 3x^2 - 3(16 - x)^2 = 0$ $\Rightarrow x^2 - (256 + x^2 - 32x) = 0$ $\Rightarrow 32x = 256$ $\Rightarrow x = 8$ At x = 8, $\left(\frac{d^2S}{dx^2}\right)_{x=8} = 96 > 0$ By second derivative test, x = 8 is the point of local minima of S. Thus, the sum of the cubes of the numbers is the minimum when the numbers are 8 and 16 - 8 = 8
Hence, the required numbers are 8 and 8.

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Assertion: Given that, $A = \{2, 4, 6\},$ $R = \{3, 5, 7, 9\}$

and R = {(2,3), (4, 5), (6, 7)} Here, f(2) = 3, f(4) = 5 and f(6) = 7

It can be seen that the images of distinct elements of A under f are distinct.

Hence, function f is one-one but f is not onto as $9 \in B$ does not have a pre-image in A.

Hence, both Assertion and Reason are true, but Reason is not a correct explanation of Assertion.

Section B

21. Given
$$\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right)$$

We know that $\cos^{-1}\left(-\theta\right) = \pi - \cos^{-1}\theta$
 $= \sin^{-1}\left(\frac{1}{3}\right) - \left[\pi - \cos^{-1}\left(\frac{1}{3}\right)\right]$
 $= \sin^{-1}\left(\frac{1}{3}\right) - \pi + \cos^{-1}\left(\frac{1}{3}\right)$
 $= \sin^{-1}\left(\frac{1}{3}\right) + \cos^{-1}\left(\frac{1}{3}\right) - \pi$
 $= \frac{\pi}{2} - \pi$
 $= -\frac{\pi}{2}$
Therefore we have,
 $\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right) = -\frac{\pi}{2}$
OR
Let $\cot^{-1}\left(\frac{-5}{12}\right) = y$
Then $\cot y = -\frac{5}{12}$
Now,
 $\sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right] = \sin 2y$
 $= 2 \sin y \cos y = 2\left(\frac{12}{13}\right)\left(\frac{-5}{13}\right)$ [since $\cot y < 0$, so $y \in (\frac{\pi}{2}, \pi)$]
 $= -\frac{120}{100}$
22. Let at any time t, the man be at distances of x and y metres from the foot and top of the tower respectively. Then,
 $y^2 = x^2 + (120)^2 ...(1)$
 $\Rightarrow 2y\frac{dy}{dt} = 2x\frac{dx}{dt}$
 $\Rightarrow -\frac{dy}{dt} = -\frac{6\cdot x}{y} ...(1i)$
Putting $x = 50$ in (i) we get $y = \sqrt{50^2 + 120^2} = 130$
Putting $x = 50$, $y = 130$ in (ii), we get

Page 10 of 20

CLICK HERE

>>

Get More Learning Materials Here : 💻

 $rac{dy}{dt} = -rac{6\cdot5 imes50}{130} = -2\cdot5$

Thus, the man is approaching the top of the tower at the rate of 2.5 km/hr.

23. It is given that function $f(x) = 2x^3 - 3x^2 - 36x + 7$

 $\Rightarrow f'(x) = 6x^2 - 6x + 36$ $\Rightarrow f'(x) = 6(x^2 - x + 6)$ $\Rightarrow f'(x) = 6(x + 2)(x - 3)$ If f'(x) = 0, then we get, $\Rightarrow x = -2, 3$

So, the point x = -2 and x = 3 divides the real line into two disjoint intervals, $(-\infty, 2), (-2, 3)$ and $(3, \infty)$

So, in interval (-2, 3) f'(x) = 6(x + 2)(x - 3) < 0Therefore, the given function (f) is strictly decreasing in interval (-2, 3).

OR

Let r be the radius, V be the volume and S be the surface area of sphere

Then, we have
$$\frac{dV}{dt} = 8 \text{ cm}^3/\text{ s}$$

To find $\frac{dS}{dt}$, when $r = 12 \text{ cm}$
Since, $V = \frac{4}{3}\pi r^3$
 $\therefore \frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \frac{dr}{dt} \Rightarrow 8 = 4\pi \times r^2 \frac{dr}{dt}$
 $\Rightarrow \frac{dr}{dt} = \frac{2}{\pi r^2} \text{ cm/s} \dots(i)$
Now, $S = 4\pi r^2$
 $\therefore \frac{dS}{dt} = \frac{d}{dt} (4\pi r^2) = 4\pi \times 2r \cdot \frac{dr}{dt}$
 $= 8\pi r \times \frac{2}{\pi r^2} [\text{ From Eq(i)}]$
 $= \frac{16}{r}$
 $\Rightarrow (\frac{dS}{dt})_{r=12} = \frac{16}{12} = \frac{4}{3} \text{ cm}^2/\text{s}$
24. Let $y = \int_0^{\pi/2} \frac{1}{(1+\sqrt{\tan x})}$
 $y = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} \dots(i)$
Using theorem of definite integral
 $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$
 $y = \int_0^{\pi/2} \frac{\sqrt{\cos(\frac{\pi}{2} - x)}}{(\sqrt{\sin(\frac{\pi}{2} - x)} + \sqrt{\cos(\frac{\pi}{2} - x)})} dx$
 $y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx \dots(i)$
Adding eq.(i) and eq.(ii), we get
 $2y = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$

Page 11 of 20

CLICK HERE

>>

Get More Learning Materials Here :

$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$

$$2y = \int_{0}^{\pi/2} 1 dx$$

$$2y = (x)_{0}^{\frac{\pi}{2}}$$

$$y = \frac{\pi}{4}$$

25. Given:- $f(x) = (x - 1) e^{x} + 1$
 $\Rightarrow f'(x) = \frac{d}{dx} ((x - 1)e^{x} + 1)$
 $= f(x) = e^{x} + (x - 1) e^{x}$
 $= f'(x) = e^{x} (1 + x - 1)$
 $= f'(x) = xe^{x}$
as given
 $x > 0$
 $= e^{x} > 0$
 $= xe^{x} > 0$
 $= f'(x) > 0$
Hence, the condition for $f(x)$ to be increasing
Thus, $f(x)$ is increasing for all $x > 0$

Section C

26. According to the question, $I = \int \frac{\sin(x-a)}{\sin(x+a)} dx$ Put $x + a = t \Rightarrow dx = dt$ $\therefore I = \int \frac{\sin(t-a-a)}{\sin t} dt = \int \frac{\sin(t-2a)}{\sin t} dt$ $= \int \frac{\sin t \cos 2a - \cos t \sin 2a}{\sin t} dt$ $[\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B]$ $= \int \cos 2a dt - \int \sin 2a \cdot \cot t dt$ $= \cos 2a [t] - \sin 2a [\log|\sin t|] + C_1$ $= (x + a)\cos 2a - \sin 2a \log|\sin(x + a)| + C_1$ [put t = x + a] $= x\cos 2a - \sin 2a \log|\sin(x + a)| + C_1$

27. Let A, B, C be the given students and let E_1 , E_2 and E_3 be the events that the problem is solved by A, B, C respectively. Then, \overline{E}_1 , \overline{E}_2 and \overline{E}_3 are the events that the given problem is not solved by A, B, C respectively.

Therefore, we have, $P(E_1) = \frac{1}{2}; P(E_2) = \frac{1}{3}; P(E_3) = \frac{1}{4};$ $P\left(\bar{E}_{1}\right) = \left(1 - \frac{1}{2}\right) = \frac{1}{2}; P\left(\bar{E}_{2}\right) = \left(1 - \frac{1}{3}\right) = \frac{2}{3} \text{ and } P\left(\bar{E}_{3}\right) = \left(1 - \frac{1}{4}\right) = \frac{3}{4}$ P(exactly one of them solves the problem) $=P\left[\left(E_1\capar{E}_2\capar{E}_3
ight) ext{ or }\left(ar{E}_1\cap E_2\capar{E}_3
ight) ext{ or }\left(ar{E}_1\capar{E}_2\cap E_3
ight)
ight]$ $P=P\left(E_1\capar{E}_2\capar{E}_3
ight)+P\left(ar{E}_1\cap E_2\capar{E}_3
ight)+P\left(ar{E}_1\capar{E}_2\cap E_3
ight)$ $=\left\{P\left(E_{1}\right)\times P\left(\bar{E}_{2}\right)\times P\left(\bar{E}_{3}\right)\right\}+\left[P\left(\bar{E}_{1}\right)\times P\left(E_{2}\right)\times P\left(\bar{E}_{3}\right)\right]\\+\left[P\left(\bar{E}_{1}\right)\times P\left(\bar{E}_{2}\right)\times P\left(\bar{E}_{3}\right)\right]$ $= \left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}\right)$ $=\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{12}\right)=\frac{11}{24}$ 28. Given, I = $\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$ $=\int_{-\pi}^{\pi}\left(\cos^2 ax+\sin^2 bx-2\cos ax\sin bx
ight)dx$ $=\int_{-\pi}^{\pi}\left(\cos^{2}ax+\sin^{2}bx
ight)dx-2\int_{-\pi}^{\pi}\cos{ax}\sin{bx}dx$ $=I_1 - I_2$ Let. I₁ = $\int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx) dx$ [be an even function] $=2\int_0^\pi \left(\cos^2 ax+\sin^2 bx
ight)dx$ $=2\int_{0}^{\pi}\left(rac{1+\cos 2ax}{2}+rac{1-\cos 2bx}{2}
ight)dx$ $=\int_0^\pi (1+\cos 2ax+1-\cos 2bx)dx$ $=\int_0^\pi (2+\cos 2ax-\cos 2bx)dx$

Page 12 of 20

CLICK HERE

Get More Learning Materials Here : 📕

$$egin{aligned} &= \left(2x + rac{\sin 2ax}{2a} - rac{\sin 2bx}{2b}
ight)_{0}^{\pi} \ &= \left(2\pi + rac{\sin 2a\pi}{2a} - rac{\sin 2b\pi}{2b}
ight) - 0 \ &= 2\pi + rac{\sin 2a\pi}{2a} - rac{\sin 2b\pi}{2b} \ I_2 &= 2\int_{-\pi}^{\pi} (\cos ax \sin bx) dx \, [\, ext{be a odd function}] \ &= 0 \left[egin{aligned} &: & \int_{-a}^{a} f(x) = 2\int_{0}^{a} f(x) dx, \, ext{if } f(x) \, ext{is even} \ & 0 & , \, ext{if } f(x) \, ext{is odd} \ \end{pmatrix}
ight] \ &: & I = I_1 - I_2 = 2\pi + rac{\sin 2a\pi}{2a} - rac{\sin 2b\pi}{2b} \end{aligned}$$

at the given integral he

Let the given integral be,

$$I = \int \frac{dx}{x\sqrt{1+x^n}}$$

$$= \int \frac{dx}{x^{n-1}dx}$$

$$= \int \frac{dx}{x^n-1}dx = dt$$

$$\Rightarrow x^{n-1}dx = dt$$

$$\Rightarrow x^{n-1}dx = dt$$

$$\Rightarrow x^{n-1}dx = \frac{dt}{n}$$

$$\therefore I = \frac{1}{n} \int \frac{dt}{t\sqrt{1+t}}$$
let $1 + t = p^2$

$$\Rightarrow dp = 2p dp$$

$$\therefore I = \frac{1}{n} \int \frac{2pdp}{(p^2-1)p}$$

$$= \frac{2}{n} \int \frac{dp}{p^2-1^2}$$

$$= \frac{2}{n} \times \frac{1}{2} \log \left| \frac{p-1}{1} \right| + C$$

$$= \frac{1}{n} \log \left| \frac{\sqrt{1+t-1}}{\sqrt{1+t+1}} \right| + C$$

$$= \frac{1}{n} \log \left| \frac{\sqrt{1+t-1}}{\sqrt{1+t+1}} \right| + C$$
29. $(x^2 + y^2) dy = xydx$

$$\Rightarrow \int \frac{x}{y} dy + \int \frac{y}{x} dy = \int dx$$

$$\Rightarrow x \log y + \frac{y^2}{2x} = x + c$$
Now, at $x = 1; y = e$

$$x \log y + \frac{y^2}{2x} = x + c \Rightarrow x + \frac{c^2}{2} = x + c \Rightarrow c = \frac{c^2}{2}$$
Now at $x = x_0; y = e$

$$x_0 \log e + \frac{e^2}{2x_0} = x_0 + \frac{e^2}{2} \Rightarrow \frac{e^2}{2x_0} = \frac{e^2}{2} \Rightarrow x_0 = 1$$
OR
We have,

$$\frac{dy}{dx} + 2y \tan x = \sin x$$
which is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$.
Here, $P = 2$ tanx and $Q = \sin x$

$$\therefore IF = e^{\int Pdx} = e^{2\int \tan xdx} = e^{2\log |\sec x|}$$

$$= e^{\log e^2 x} \quad [:m \log n = \log n^m]$$

$$= \sec^2 x [:m \log n = \log n^m]$$

$$= \sec^2 x [:m \log x + \frac{1}{\cos^2} dx + C$$

$$\Rightarrow y \sec^2 x = \int \tan x \sec x dx + C$$

$$\Rightarrow y \sec^2 x = \int \tan x \sec x dx + C$$

$$\Rightarrow y \sec^2 x = \int \tan x \sec x dx + C$$

$$\Rightarrow y \sec^2 x = \int \tan x \sec x dx + C$$

$$\Rightarrow y \sec^2 x = \sin x - \frac{\pi}{3}.$$

On putting y = 0 and $x = \frac{\pi}{3}$ in Eq. (ii), we get

Page 13 of 20

OR

Get More Learning Materials Here :

CLICK HERE **》** $\begin{array}{l} 0 \times \sec^2 \frac{\pi}{3} = \sec \frac{\pi}{3} + C \\ \Rightarrow \quad 0 = 2 + C \Rightarrow C = -2 \\ \text{On putting the value of C in Eq. (ii), we get} \\ y \sec^2 x = \sec x - 2 \end{array}$

 $\therefore y = \cos x - 2\cos^2 x$

which is the required particular solution of the given differential equation

30. Our problem is to minimise the objective function $Z = 5x + 10 y \dots (i)$

Subject to constraints

x + 2y ≤120.....(ii)

x + y ≥ 60.....(iii)

 $x - 2y \ge 0$(iv)

 $x \ge 0$, $y \ge 0$ (which is the non negative constraint which will restrict the feasible region to the first quadrant only) Table of values for line (ii) x + 2y = 120 are given below.

х	0	120
у	60	0

Replace O (0, 0) in the inequality $x + 2y \le 120$, we get

 $0+2\times 0\leq 120$

 $\Rightarrow \quad 0 \leq 120 \,$ (which is true)

So, the half plane for the inequality of the line (ii) is towards the origin which means that the origin O(0,0) is a point in the feasible region of the inequality of the line (ii).

Secondly, draw the graph of the line x + y = 60. Hence the table of values of the line (iii) is given as follows.

x	0	60
у	60	0

On replacing O(0, 0) in the inequality $x + y \ge 60$, we get

 $0+0\geq 60 \Rightarrow 0\geq 60~~({
m which ~is~false})$

So, the half plane for the inequality of the line (iii) is away from the origin, which means that the origin is not a point on the feasible region.

Thirdly, draw the graph of the line x - 2y = 0 and the table of values for (iv) is given as follows.

Х	0	10
у	0	5

On solving equations x - 2y = 0 and x + y = 60, we get D(40,20) and on solving equations x - 2y = 0 and x + 2y = 120, we get C (60, 30)

Feasible region is ABCDA, which is a bounded feasible region, the coordinates of the corner points of the feasible region are given as A (60, 0), B (120, 0), C (60, 30) and D (40, 20).

Corner points	$\mathbf{Z} = 5\mathbf{x} + 10\mathbf{y}$
A(60,0)	Z = 300(minimum)
B(120,0)	Z= 600
C(60,0)	Z= 600
D(40,20)	Z= 400

The values of Z at these points are as follows So, the minimum value of Z is obtained as 300, which occurs at the point (60, 0).

Page 14 of 20

Get More Learning Materials Here :

CLICK HERE

i. z(A) = 13(4) - 15(0) = 52 z(B) = 13(5) - 15(2) = 35 z(C) = 13(3) - 15(4) = -21 z(D) = 13(0) - 15(2) = -30 z(0) = 0: Max (z) = 52 at A(4, 0), Min(z) = -30 at (0, 2) ii. $z(A) = z(B) \Rightarrow 4k + 0 = 5k + 2 \Rightarrow k = -2$

31. Given $e^{x} + e^{y} = e^{x + y}$...(i)

On dividing Eq(i) by e^{x+y} , we get,

 $e^{-y} + e^{-x} = 1$...(ii)

Therefore, on differentiating both sides of Eq(ii) w.r.t x, we get,

0

$$e^{-y} \cdot \left(\frac{-dy}{dx}\right) + e^{-x}(-1) =$$

$$\Rightarrow -e^{-y}\frac{dy}{dx} + e^{-x}(-1) = 0$$

$$\Rightarrow -e^{-y}\frac{dy}{dx} = e^{-x}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{e^{-x}}{e^{-y}}$$

$$\Rightarrow \frac{dy}{dx} = -e^{(y-x)}$$

$$\therefore \frac{dy}{dx} + e^{(y-x)} = 0$$

Hence Proved.

Section D

OR

32. Points in the form of line in the given diagram

y=3x/4-3/2 The equation of side AB is, $y-0=rac{5-0}{4-2}(x-2)$ $\Rightarrow y = rac{5}{2}(x-2)$ The equation of side BC is, $y-3=rac{5-3}{4-6}(x-6)$ $\Rightarrow y-3=rac{2}{-2}(x-6)$ $\Rightarrow y - 3 = -1(x - 6)$ $\Rightarrow y = -x + 9$ The equation of side AC is, $y-0=rac{3-0}{6-2}(x-2)$ $\Rightarrow y = rac{3}{4}(x-2)$ Area $=\frac{5}{2}\int_{2}^{4}(x-2)dx + \int_{4}^{6}-(x-9)dx - \frac{3}{4}\int_{2}^{6}(x-2)dx$ $A = \int_{2}^{4}\frac{5}{2}(x-2)dx + \int_{0}^{1}-(x+9)dx + \int_{6}^{2}\frac{3}{4}(x-2)dx$ On integrating we get, $A = rac{5}{2} \left[rac{x^2}{2} - 2x
ight]_2^4 + \left[rac{-x^2}{2} + 9x
ight]_1^0 - rac{3}{4} \left[rac{x^2}{2} - 2x
ight]_2^6$ On applying limits we get, $A = \frac{5}{2}[8 - 8 - 2 + 4] + [-18 + 54 + 8 - 36] - \frac{3}{4}[18 - 12 - 2 + 4]$ $A = 5 - 8 - \frac{3}{4}(8)$ = 13 - 6 = 7 sq. units. Hence the required area is 7 sq. units.

Page 15 of 20

CLICK HERE >> 33. Given that,

R = {(1, 39), (2, 37), (3, 35) (19, 3), (20, 1)} Domain = {1,2,3,.....,20} Range = {1,3,5,7.....,39} R is not reflexive as (2, 2) \notin R as $2 \times 2 + 2 \neq 41$ R is not symmetric as (1, 39) \in R but (39, 1) \notin R R is not transitive as (11, 19) \in R, (19, 3) \in R But (11, 3) \notin R Hence, R is neither reflexive, nor symmetric and nor transitive.

OR

We observe the following properties of f.

Injectivity: Let x, $y \in R_0$ such that f(x) = f(y). Then,

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, f: $R_0 \rightarrow R_0$ is one-one.

Surjectivity: Let y be an arbitrary element of R_0 (co-domain) such that f(x) = y. Then,

$$f(x) = y \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{x}$$

Clearly, $x = \frac{1}{y} \in R_0$ (domain) for all $y \in R_0$ (co-domain).

Thus, for each $y \in ext{R}_0$ (co-domain) there exits $x = rac{1}{y} \in R_0$ (domain) such that $f(x) = rac{1}{x} = y$

So, $f : R_0 \rightarrow R_0$ is onto.

Hence, f: $R_0 \rightarrow R_0$ is one-one onto.

This is also evident from the graph of f(x) as shown in fig.

Let us now consider $f : N \to R_0$ given by $f(x) = \frac{1}{x}$

For any x, $y \in N$, we find that

 $f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$

So, f: N \rightarrow R₀ is one-one.

We find that $\frac{2}{3}, \frac{3}{5}$ etc. in co-domain R_0 do not have their pre-image in domain N. So, f: N $\rightarrow R_0$ is not onto.

Thus, f: N \rightarrow R₀ is one-one but not onto.

34. x - y + z = 4 x - 2y - 2z = 9 2x + y + 3z = 1Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$ Then, given system of equations can be rewritten as,

AX = C

Page 16 of 20

Get More Learning Materials Here : 📕

CLICK HERE

Now, $AB = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ $= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}^{2}$ AB = 8IAB - 6I $A^{-1} = \frac{1}{8}B \begin{bmatrix} \because A^{-1}AB = 8A^{-1}I \\ B = 8A^{-1} \end{bmatrix}$ $\Rightarrow A^{-1} = \frac{1}{8} \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-7}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{5}{8} & \frac{-3}{8} & \frac{-1}{8} \end{bmatrix}$ Now, AX = C, $\Rightarrow X = A^{-1}C$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-7}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{5}{8} & \frac{-3}{8} & \frac{-1}{8} \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} \frac{-4}{2} + \frac{9}{2} + \frac{1}{2} \\ \frac{-28}{8} + \frac{9}{8} + \frac{3}{8} \\ \frac{20}{8} + \frac{-27}{8} + \frac{-1}{8} \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$ $\Rightarrow x = 3, y = -2, z = -1$ 35. Given $ec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ $ec{r} = (3 \hat{i} + 3 \hat{j} - 5 \hat{k}) + \mu (-2 \hat{i} + 3 \hat{j} + 8 \hat{k})$ Here, we have $ec{a}_1 = \hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ $\stackrel{\frown}{\mathrm{b}_1}=2\,\hat{\imath}+3\hat{\jmath}+6\hat{\mathrm{k}}$ $\stackrel{
ightarrow}{a_2}=3\hat{i}+3\hat{j}-5\hat{k}$ $\hat{\mathrm{b}_2}=-2\,\hat{\imath}+3\hat{\jmath}+8\hat{\mathrm{k}}$ Thus, $ec{ extbf{b}_1} imes ec{ extbf{b}_2} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ 2 & 3 & 6 \ -2 & 3 & 8 \ \end{bmatrix}$ $=\hat{i}(24-18)-\hat{j}(16\!+\!12)+\hat{k}(6-6)$ $=\sqrt{36+784+9}$ $=\sqrt{820}$ $\vec{a}_2 - \vec{a}_1 = (3-1)\hat{i} + (3-2)\hat{j} + (-5+4)\hat{k}$ $\therefore \overrightarrow{a_2} - \overrightarrow{a_1} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$ Now, we have $(\overrightarrow{\mathbf{b}_1} \times \overrightarrow{\mathbf{b}_2}) \cdot (\overrightarrow{\mathbf{a}_2} - \overrightarrow{\mathbf{a}_1}) = (6\,\hat{\imath} - 28\,\hat{\jmath} + 0\hat{\mathbf{k}}) \cdot (2\,\hat{\imath} + \hat{\jmath} - \hat{\mathbf{k}})$ $= (6 \times 2) + ((-28) \times 1) + (0 \times (-1))$ = 12 - 28 + 0= -16 Thus, the shortest distance between the given lines is

Page 17 of 20

CLICK HERE

>>

Get More Learning Materials Here :

$$\mathbf{d} = \begin{vmatrix} \overrightarrow{(\mathbf{b}_1 \times \mathbf{b}_2) \cdot (\mathbf{a}_2 - \mathbf{a}_1)} \\ \overrightarrow{\mathbf{b}_1 \times \mathbf{b}_2} \end{vmatrix}$$
$$\Rightarrow \mathbf{d} = \begin{vmatrix} \frac{-16}{\sqrt{820}} \end{vmatrix}$$
$$\therefore d = \frac{16}{\sqrt{820}} \text{ units}$$

OR

Suppose the point (1, 0, 0) be P and the point through which the line passes be Q(1, -1, -10). The line is parallel to the vector $ec{b}=2\hat{i}-3\hat{j}+8\hat{k}$

Now,

$$\overrightarrow{PQ} = 0\hat{i} - \hat{j} - 10\hat{k}$$

 $\therefore \vec{b} \times \overrightarrow{PQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 8 \\ 0 & -1 & -10 \end{vmatrix}$
 $= 38\hat{i} + 20\hat{j} - 2\hat{k}$
 $\Rightarrow |\vec{b} \times \overrightarrow{PQ}| = \sqrt{38^2 + 20^2 + 2^2}$
 $= \sqrt{1444 + 400 + 4}$
 $= \sqrt{1848}$
 $d = \frac{|\vec{b} \times \overrightarrow{PQ}|}{|\vec{b}|}$
 $= \frac{\sqrt{1848}}{\sqrt{77}}$
 $= \sqrt{24}$
 $= 2\sqrt{6}$

Suppose L be the foot of the perpendicular drawn from the point P(1,0,0) to the given line-

P(1,0,0) $L(2\lambda + 1, 3\lambda - 1, 8\lambda - 10)$ The coordinates of a general point on the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ are given by $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} = \lambda$ $\Rightarrow x = 2\lambda + 1$ $y = -3\lambda - 1$ $z = 8\lambda - 10$ Suppose the coordinates of L be $(2\lambda+1,-3\lambda-1,8\lambda-10)$ Since, The direction ratios of PL are proportional to, $2\lambda+1-1, -3\lambda-1-0, 8\lambda-10-0$, i.e., $2\lambda, -3\lambda-1, 8\lambda-10$ Since, The direction ratios of the given line are proportional to 2, -3, 8, but PL is perpendicular to the given line. $\therefore 2(2\lambda) - 3(-3\lambda - 1) + 8(8\lambda - 10) = 0$ $\Rightarrow \lambda = 1$ Substituting $\lambda = 1$ in $(2\lambda + 1, -3\lambda - 1, 8\lambda - 10)$ we get the coordinates of L as (3, -4, -2). Equation of the line PL is given by $\frac{x-1}{3-1} = \frac{y-0}{-4-0} = \frac{z-0}{-2-0}$ $= \frac{x-1}{1} = \frac{y}{-2} = \frac{z}{-1}$ $\hat{r} = \hat{i} + \lambda(\hat{i} - 2\hat{j} - \hat{k})$

Section E

36. i. According to given information, we construct the following table.

Given, total applications = 2000

Folk Genre	Classical Genre
960 (given)	2000 - 960 = 1040

Page 18 of 20

Get More Learning Materials Here :

Below 18	192 (given)	1040 - 104 = 936	
18 or Above 18	960 - 192 = 768	104 (given)	
Let E_1 = Event that application f	for folk genre	·	
E_2 = Event that application for c	lassical genre		
A = Event that application for be	elow 18		
B = Event that application for 18	3 or above 18		
$P(E_2) = \frac{1040}{100}$			
and $P(P \cap F_1) = \frac{104}{2000}$			
and $P(B \cap E_2) = \frac{1}{2000}$			
Required Probability = $\frac{P(E_1)}{P(E_2)}$			
$\frac{104}{2000}$ _ 1			
$-\frac{1040}{200}$ - 10			
Required probability = $P\left(\frac{\text{fol}}{1}\right)$			
$- \mathbf{p}\left(\frac{E_1}{E_1}\right)$	718)		
$-P\left(\frac{-A}{A}\right)$			
$=\frac{P(L_1 A)}{P(A)}$			
Now, $P(E_1 \cap A) = \frac{192}{2000}$			
and $P(A) = \frac{192 + 936}{1128} = \frac{1128}{1128}$			
2000 2000 192	100		
\therefore Required probability = $\frac{2000}{1128}$ =	$=\frac{192}{1128}=\frac{8}{47}$		
2000 Here			
P(A) = 0.4 P(B) = 0.8 and P(B)	A) = 0.6		
$\cdots \mathbf{D}(\mathbf{P} \mathbf{A}) = \frac{P(B \cap A)}{P(B \cap A)}$	1) 0.0		
$P(\mathbf{D} \mathbf{A}) = \frac{P(A)}{P(A)}$			
$\Rightarrow P(B \cap A) = P(B A).P(A)$			
$= 0.6 \times 0.4 = 0.24$			
$\therefore P(A \cup B) = P(A) + P(B) - P(A)$	$A \cap B$)		
= 0.4 + 0.8 - 0.24			
= 1.2 - 0.24 = 0.96			
Since A and B are independent	ovents A' and B' are also independe	at Therefore	
Since, A and D are independent $D(A' \cap P') = D(A') \cdot D(P')$	events, A and B are also independe.	iit. Therefore,	
$r(A + B) = r(A) \cdot r(B)$ = (1 - P(A)(1 - P(B))			
-(1 - 1(1)(1 - 1(D))) -(1 - 3)(1 - 4)			
$=\left(1-\frac{1}{5}\right)\left(1-\frac{1}{9}\right)$			
$=\frac{2}{5}\cdot\frac{3}{9}$			
$=\frac{2}{9}$			
Force applied by team A			
$=\sqrt{4^2+0^2}$			
= 4 N			
Force applied by team B			
$=\sqrt{(-2)^2+4^2}$			
$=\sqrt[7]{4+16}$			
$=\sqrt{20}$			
$=2\sqrt{5}\mathrm{N}$			
Force applied by team C			
$=\sqrt{(-3)^2+(-3)^2}$			
$=\sqrt{9+9}=\sqrt{18}=3\sqrt{2}$			
Hence, the force applied by team	n B is maximum.		
So, Team 'B' will win.			
Sum of force applied by team A	, B and C		
	<u> </u>		
= (4 + (-2) + (-3))i + (0 + 4 + (-3))i + (0 + 4) + (-3)i + (0 + 4)i + (-3)i + (0 + 4)i + (-3)i + (-3)i + (0 + 4)i + (-3)i + (-	3)) <i>j</i>		

Get More Learning Materials Here :

 $=-\hat{i}+\hat{j}$ Magnitude of team combine force $=\sqrt{(-1)^2+(1)^2}$ $=\sqrt{2}N$ iii. Force applied by team B $=\sqrt{(-2)^2+4^2}$ $=\sqrt{4+16}$ $=\sqrt{20}$ $= 2\sqrt{5} N$ OR Force applied by team A $=\sqrt{4^2+0^2}$ = 4 N 38. i. P(x₁, y₁) is on the curve y = x² + 7 \Rightarrow y₁ = x₁² + 7 Distance from $p(x_1, x_1^2 + 7)$ and (3, 7) D = $\sqrt{(x_1 - 3)^2 + (x_1^2 + 7 - 7)^2}$ $\Rightarrow \sqrt{(x_1-3)^2+\left(x_1^2
ight)^2}$ $\Rightarrow D=\sqrt{x_1^4+x_1^2-6x_1+9}$ ii. D = $\sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$ D' = $x_1^4 + x_1^2 - 6x_1 + 9$ $rac{dD'}{dx} = 4x_1^3 + 2x_1 - 6 = 0 \ rac{dD'}{dx} = 2x_1^3 + x_1 - 3 = 0$ $\Rightarrow (x_1 - 1)(2x_1^2 + 2x_1 + 3) = 0$ $x_1 = 1$ and $2x_1^2 + 2x_1 + 3 = 0$ gives no real roots The critical point is (1, 8). iii. $\frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6$ $\frac{d^2D'}{dx^2} = 12x_1^2 + 2$ $\frac{\frac{d^2D'}{dx^2}}{dx^2}\Big]_{x_1=1} = 12 + 2 = 14 > 0$ Hence distance is minimum at (1, 8). OR $D=\sqrt{x_1^4+x_1^2-6x_1+9}$

 $D = \sqrt{1+1-6+9} = \sqrt{5}$ units

Page 20 of 20

Get More Learning Materials Here : **_**

CLICK HERE